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Abstract
The equilibrated grain boundary groove shapes for the Cd solid solution in
equilibrium with the Cd–Zn liquid have been observed by rapid quenching.
From the observed grain boundary groove shapes, the Gibbs–Thomson
coefficient and the solid–liquid surface energy for the Cd solid solution in
equilibrium with the Cd–Zn eutectic liquid have been determined to be (8.16 ±
0.65)× 10−8 K m and (121 ± 16) mJ m−2 with the numerical method and from
the Gibbs–Thomson equation, respectively. The grain boundary energy for the
same material has been calculated as (241 ± 30) mJ m−2 from the observed
grain boundary groove shapes. The thermal conductivities of the solid and liquid
phases for Cd–26.5% Zn and Cd–5% Zn alloys have also been measured.

1. Introduction

The solid–liquid surface energy, σSL, is defined as the reversible work required to create a unit
area of the interface at constant temperature, volume and chemical potentials [1] and it plays a
critical role in phase transformations. Many attempts have been made to determine the values
of σSL in various materials by using different methods over the last 50 years. These examples
emphasize the importance of σSL in understanding solid–liquid transformations and in having
quantitative values of σSL involved. Unfortunately, it is not easy to measure σSL even for a
pure material, and very little progress has been made in its measurement for multi-component
system.

A technique was developed to measure σSL in metallic alloy systems by Gündüz and
Hunt [2, 3]. The technique was based on equilibrating a grain boundary with a solid–liquid
interface in an applied temperature gradient, G. When the planar grain boundary intersects
with a stabilized planar solid–liquid interface, a shape of the grain boundary groove is formed
(figure 1(a)). It is possible to obtain the Gibbs–Thomson constant, �, from the groove shape
and this allows calculation of σSL for the system, provided that the related physical constants
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Figure 1. (a) Schematic illustration of an equilibrated grain boundary groove formed at a solid–
liquid interface in a temperature gradient, showing the x , y coordinates and θ . (b) The definitions
of θ , dθ , ds, dy, G , points on the groove, x and y.

are known. The Gibbs–Thomson coefficient, �, is expressed in the form of a change in
undercooling �Tr with radius r for a groove as

�Tr = �

r(x, y)
. (1)

Equation (1) can be integrated in the y direction (perpendicular to the macroscopic interface)
from the flat interface to a point on the cusp [2] (figure 1(b)):∫ y

0
�Tr dy = �

∫ y

0

1

r
dy. (2)

The left-hand side of equation (2) may be evaluated if �Tr is known as a function of y. When
the thermal conductivities of the solid (KS) and liquid (KL) phases are equal, �Tr just depends
on G and y, that is �Tr = Gy. However, in practice the conductivities of the two phases will
not be equal, so that the left-hand side of equation (2) can be integrated numerically using the
numerically calculated �Tr values [2, 3]. The right-hand side of equation (2) may be evaluated
for any shape by defining ds = r dθ (where s is the distance along the interface and θ is the
angle of the interface to y, which is obtained by fitting a Taylor expansion to the adjacent points
on the cusp) giving∫ y

0

1

r
dy = (1 − sin θ). (3)

This allows the Gibbs–Thomson coefficient to be determined for a measured grain boundary
groove shape. To get accurate values of the Gibbs–Thomson coefficient, the shape of the
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interface, the temperature gradient in the solid, GS, and the conductivities of the solid, (KS),
and liquid, (KL), phases must be known.

The solid–liquid surface energy is obtained from the thermodynamic definition of the
Gibbs–Thomson coefficient, which is expressed as

� = σSL

�Sf
(4)

where �Sf is the effective entropy of melting per unit volume, which must be known.
Gündüz and Hunt [2, 3] performed measurements of the solid–liquid surface energies in

Al–Cu, Al–Si, Pb–Sn and Al–Mg eutectic-based systems. Maraşlı and Hunt [4, 5] extended the
technique to measure solid–solid surface energies. In addition, they also made measurements
in a peritectic system for the first time. They made measurements of solid–solid and solid–
liquid surface energies in the Al–CuAl2 and Al–NiAl3 eutectic systems and the Al–Ti peritectic
system.

More recently, Bayender et al [6, 7], Maraşlı et al [8], Keşlioğlu and Maraşlı [9] and Erol
et al [10] observed the equilibrated grain boundary groove shapes for transparent and opaque
materials. They applied Gündüz and Hunt’s numerical method to determine �, σSL, and σGB,
for pivalic acid, camphene, succinonitrile and succinonitrile-carbon tetrabromide, Al–Zn and
Bi–Cd binary eutectic systems.

The aim of the present work is to determine �, σSL and σGB for the Cd solid solution in
equilibrium with Cd–Zn eutectic liquid from the observed grain boundary groove shapes.

2. Experimental apparatus and method

2.1. Experimental apparatus

To observe the equilibrated grain boundary groove shapes in opaque materials, Gündüz and
Hunt designed a radial heat flow apparatus, and the detail of the apparatus is shown in figure 2.
Maraşlı and Hunt improved the experimental apparatus for higher temperature [4]. In both
experimental apparatuses, the cooling jacket was very close to the outside of the specimen to
obtain effective cooling. The high temperature gradient is useful to obtain the grain boundary
groove shapes in a shorter annealing time, but it produces small cusp shapes. In the solid–liquid
interface energy measurements, a low temperature gradient is desired to obtain the larger cusp
shapes.

The crucible consisted of three parts: a cylindrical bore (25 mm inner diameter ID, 30 mm
outer diameter OD and 170 mm in length) and the top and bottom lids which were tightly fitted
to the cylindrical part. There were usually three stationary thermocouples (inserted in 0.8 mm
ID, 1.2 mm OD alumina tube) which were placed 1.0–1.5 mm away from the central alumina
tube: two were for measuring the temperature and the other one was for the control unit (for
details, see [2, 3, 11]). The moveable thermocouple (inserted in 1 mm ID, 2 mm OD, alumina
tube) was placed 10 mm away from the centre. The central heating element was a single
Kanthal A1 wire (typically 1.8 mm diameter and about 210 mm in length) placed inside a thin-
walled alumina tube (2 mm ID, 3 mm OD). The end of the wire was threaded and screwed into
7 mm copper rods. The outside of the cylindrical crucible (sample) was kept cool by the water-
cooled jacket. The jacket was placed in an alumina tube (85 mm ID, 100 mm OD and 600 mm
in length). Kanthal A1 resistance wire was wound on the alumina tube to obtain an outer
heater which gives a hot zone of 300 mm. The inner heater temperature was controlled by a
Euroterm type 9706 controller and the outer one was controlled by a Euroterm 815 P controller
using K-type (0.5 mm thick insulated chromel–alumel) thermocouples. The potential difference
between the ends of the central heating element and the known resistance were checked with
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Figure 2. Schematic illustration of the apparatus.

Keithley 2000 and Hewlett Packard 34401 multimeters. Cd–Zn alloys were prepared in a
vacuum melting furnace from 4N Cd and Zn. After several stirrings, the molten alloy was
poured into the graphite crucible held in a hot filling furnace which was set at approximately
50 K above the eutectic temperature, TE, of the alloy (539 K). The alloy was then directionally
solidified from bottom to top to ensure that the crucible was completely filled. The sample was
then taken out of the hot filling furnace, all thermocouples and the inner heating element were
placed in the sample, and the sample was inserted in the cooling jacket, then the cooling jacket
was placed in the radial heat flow apparatus. The apparatus is capable of holding the sample
to within ±0.05 K for a day and ±0.1 K for up to a week. The apparatus could be operated
either to give relatively a low temperature gradient case (0–1 K cm−1; the inner and the outer
heaters were used together without water cooling) or to give a higher temperature gradient
case (10–20 K cm−1; only the inner heater was used with water cooling). The temperatures
were calibrated in situ with the low temperature gradient case. The sample was heated up to
5 K below TE using the outer heater, and then thermocouples were calibrated by recording TE

during a very slow heating using the inner heater.
The equilibrating time had to be obtained experimentally. Several experiments were

carried out to obtain the necessary equilibrating time. The time to reach equilibrium for the
Cd solid solution with the Cd–Zn eutectic liquid was found to be between 5 and 14 days,
depending on the liquid thickness. After the calibration, the sample was annealed for about 14
days using the high temperature gradient case to ensure that droplets in the semi-solid region
migrated to the solid–liquid interface by TGZM (temperature gradient zone melting). During
the annealing period, the sample was kept in a low argon pressure. The temperature of the
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stationary thermocouples was continuous, and the temperature of the moveable thermocouple
and input power were recorded periodically. At the end of the annealing time, the sample was
rapidly quenched by turning off the input power, which is sufficient to obtain a well-defined
and stationary solid–liquid surface.

2.2. Sample preparation for metallography

When the equilibrated sample was removed from the furnace, the sample was first cut
transversely into ∼25 mm lengths and these transverse sections were ground with 180 grid
SiC paper before mounting. Grinding and polishing were then carried out using standard
techniques. After polishing, the samples were etched with 2% nitric acid in water from 5
to 10 s.

The equilibrated grain boundary groove shapes were then photographed with a CCD digital
camera placed on top of an Olympus BH2 light optical microscope using a 50 times objective.
A micrometer (100 × 0.001 = 10 mm) was also photographed using the same objective. The
digital camera has rectangular pixels. Thus, the magnifications in the x and y directions are
different (in this work, COR RJ(J):0.00002459 cm and COR XK(K):0.00002903 cm). The
photographs of the equilibrated grain boundary groove shapes and the micrometer in the x and
y directions used Adobe Photoshop 7.0 version software, so that accurate measurements of the
groove coordinate points on the groove shapes could be made.

2.3. The groove coordinates

In order to obtain accurate � values, not only G and KS values but also coordinates on the grain
boundary grooves must be measured accurately. The actual coordinates of the grooves, x, y, z,
should be measured on the orthogonal axes x, y, z, where the x-axis is parallel and the y-axis
is normal to the flat solid–liquid interface and the z-axis lies at the base of the grain boundary
groove. The coordinates x ′, y ′ of the grain boundary groove shape can be transformed to x, y
by considering the geometry of the grain boundary groove shape in two different planes which
are parallel to each other (see details in [4]). Referring to figure 3, d is the distance between the
first and second planes along the z ′-axis, b is the displacement of the grain boundary position
along the x ′-axis, a is the displacement of the solid–liquid interface along the y ′-axis, α is the
angle between the x ′-and x-axes, and β is the angle between the y ′-and y-axes. Considering the
right-angle triangle ABC (see figure 3), the relation between x and x ′ can be expressed as [5]

x = x ′ cos α = x ′
√

a2 + d2

√
a2 + b2 + d2

(5)

and from the right-angle triangle DEF (see figure 3), the relation between y ′ and y can be
expressed as

y = y ′ cos β = y ′ d√
a2 + d2

. (6)

As can be seen from equations (5) and (6), if the values of a, b and d are measured, then
the groove coordinates, x ′, y ′, can be transformed into the x, y coordinates. The required a, b
and d measurements were made so that appropriate transformation to the coordinates could be
deduced (see detail in [5]).

2.4. Temperature gradient measurements

The temperature gradient at the solid–liquid interface in the solid phase must be measured
for each equilibrated groove shape in order to calculate the related �. At steady state, the
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Figure 3. (a) Schematic illustration for metallic examination of the sample, where B is the location
of the grain boundary groove shape on the first plane OJFA, C is the location of the grain boundary
groove shape on the second plane HIDC, AB = b, CG = ED = a and AG = d. (b) Schematic
illustration of the displacement of the grain boundary groove shape position along the x ′-and y′-
axes [4].

temperature gradient at radius r is given by(
dT

dr

)
s

= − Q

2πr	KS
(7)
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where Q is input power, 	 is the length of the heating element, r is the distance of solid–liquid
interface to the centre of the sample, and KS is the thermal conductivity of the solid phase. To
obtain a reliable G value from equation (7), it is necessary to measure Q, KS, and r values as
accurately as possible. Q was obtained by measuring the voltage drop across the central single
wire heater and the current flowing through the wire.

2.5. Thermal conductivity of the solid phase

In order to calculate the Gibbs–Thomson constant � with the numerical method, it is necessary
to know the thermal conductivity of the phases. The thermal conductivity of the phases
must be measured as accurately as possible, not only to find out the thermal conductivity
ratios (R = KL/KS) but also to calculate the temperature gradient, G, in the solid at the
solid–liquid interface. The radial heat flow method has some unique theoretical and practical
advantages that, through careful experimental work, can yield reliable results over wide KS and
temperature ranges.

Integration of equation (7) for a cylindrical sample gives

KS = Q ln(r2/r1)

2π	(T1 − T2)
(8)

where r1 and r2 are fixed distances from the centre of the sample, and T1 and T2 are temperatures
at the fixed positions r1 and r2, respectively. If Q, r1, r2, 	, T1 and T2 can be accurately
measured for the well-characterized sample, then reliable KS values can be evaluated.

The samples were heated using the central heating wire in steps of 293–533 K. The
samples were kept at steady state from 8 to 12 h. At steady state, the total input power and
the temperatures were measured. When all the desired power and temperature measurements
were completed, the input power was turned off and the samples were left to cool to room
temperature. The process was repeated several times to obtain average values.

The thermal conductivities of solid phases of Cd–26.5 at.% Zn (Cd–Zn eutectic) and
the Cd–5 at.% Zn alloys were measured in the radial heat flow apparatus and are shown
in figure 4. The values of thermal conductivities which are used in the calculations were
obtained by extrapolating the curves at the eutectic temperature (539 K). The value of thermal
conductivity of the Cd solid solution (Cd–5 at.% Zn) is obtained as 86 W K−1 m−1 and the
value of thermal conductivity of Cd–Zn eutectic liquid solution (Cd–26.5 at.% Zn) is obtained
as 60 W K−1 m−1. So, the thermal conductivity ratio R is obtained as 0.70 for the Cd solid
solution in Cd–Zn liquid solution.

3. Results and discussion

3.1. The Gibbs–Thomson coefficients

The Gibbs–Thomson coefficient, �, for the Cd solid solution Cd–Zn liquid solution was
calculated from the measured groove shapes using a numerical method. Details of the
numerical program for the calculation of σSL in the KL �= KS case are given in [2–4]. The
calculations were carried out using 10 equilibrated grain boundary groove shapes (figure 5).

The uncorrected � and the corrected � values were obtained for the Cd solid solution
Cd–Zn liquid solution (figures 5, 6 and table 1). The uncorrected � values may be used to
get an estimate of the magnitude of real � values. The values of � for the Cd solid solution
are given in table 1. The average value of � from table 1 is (8.16 ± 0.65) × 10−8 K m for
Cd solution. The error in the Gibbs–Thomson coefficient determinations is estimated to be
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Table 1. Gibbs–Thomson coefficients for the Cd solid solution Cd–Zn liquid solution. (Note:
�Uncorrected = 10.0 ± 2.25 × 10−8 K m; �Corrected = 8.16 ± 0.65 × 10−8 K m.)

Gibbs–Thomson coefficient ×10−8 (K m)

Uncorrected Uncorrected Corrected Corrected
Groove no. GS × 102 α β left-hand right-hand left-hand right-hand
(see figure 5) (K m−1) (deg) (deg) side side side side

A 11.25 39.02 48.11 15.17 15.57 7.86 7.77
B 11.25 34.08 31.52 12.19 12.36 8.63 8.60
C 11.25 28.81 21.24 9.71 8.91 8.14 7.54
D 8.94 21.06 13.97 10.47 9.79 9.24 8.60
E 9.22 6.53 15.87 7.65 8.63 7.14 8.49
F 12.41 10.22 20.62 9.47 9.78 8.81 8.77
G 12.41 0.76 7.86 7.82 8.08 7.72 7.73
H 8.36 40.50 12.57 10.76 9.98 8.59 8.58
İ 9.52 29.63 9.77 8.01 7.72 7.07 6.99
J 11.96 17.69 18.16 9.64 9.08 8.86 8.16

about 8%. This value of � is in good agreement with another previous experimental value of
�(8.28 ± 0.33) × 10−8 K m for the Cd solid solution [13].

3.2. The effective entropy change

To calculate the solid–liquid surface energy, it is also necessary to know the effective entropy
change per unit volume. The effective entropy change per unit volume, �Sf, for a two-
component system is given as [2]
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Figure 5. Typical grain boundary groove shape for the Cd solid solution in equilibrium with the
Cd–Zn eutectic liquid.

(This figure is in colour only in the electronic version)

�Sf = RTE(CS − CL)

mLVS(1 − CL)CL
(9a)

�Sf = RTE

mLVS
f (C) (9b)
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where R is the gas constant, TE is the eutectic temperature (539 K), CS and CL are the
compositions of solid and liquid phases in at.%, respectively, VS is the molar volume, and
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Table 2. A comparison of the solid–liquid surface energy measured in the present work with the
previous works.

Phases
Solid–liquid surface energy

System Solid Liquid TE (K) σSL (mJ m−2)

Cd Cd Cd 594 65.5 [16]
Cd Cd Cd 484 66 [17]

484 81 [17]
484 85 [17]

Bi–Cd Eutectic Cd–0.03 at.% Bi Bi–54.6 at.% Cd 418.7 81.22 ± 7.31 [13]
Cd–Zn Eutectic Cd–5 at.% Zn Cd–26.5 at.% Zn 539 121 ± 16 [present work]

mL is the liquidus slope. The molar volume, VS is expressed as

VS = Vc Na
1

n
(10)

where Vc is the volume of the unit cell, Na is Avogadro’s number and n is the number of
molecules per unit cell. The obtained value of f (C) is −1.10, mL is −2.56 × 102 K/at.
and VS is 12.99 × 10−6 m3 either from density and atomic mass or from lattice parameters
and the number of molecules per unit cell. The other parameters (TE, mL, CS and CL) can
be obtained from the relevant phase diagram [14]. As discussed by Tassa and Hunt [15], the
biggest uncertainty comes from the measurement of mL. The uncertainty in �Sf due to the
uncertainties in the parameters is estimated to be 5%.

3.3. Solid–liquid surface energy, σSL

If the values of the Gibbs–Thomson coefficient and the entropy of fusion per unit volume are
measured, the solid–liquid surface energy can be calculated from equation (4). The value of �

for the Cd solution Cd–Zn liquid solution was (8.16 ± 0.65 × 10−8 K m) and the entropy of
fusion per unit volume for the same alloy is 1.488±0.073×10−6 J/ K per m3. The value of the
solid–liquid surface energy together with the standard deviation is obtained as 121±16 mJ m−2.

The error in � was estimated to be 8% and in �Sf it was estimated to be about 5%, given
a total estimated error for σSL of about 13%. A comparison with the previous work is shown
in table 2. Reasonably good agreement is obtained between the experimental values of σSL

of Cd solid solution with Cd–Zn liquid solution. However, the value σSL of Cd solid solution
is obtained as 65.5 mJ m−2 from the radial distribution function and the value σSL of Cd solid
solution is obtained as 81.22 mJ m−2 using the same method in Bi–Cd alloy, and the theoretical
values of Cd solid solution are obtained as 66, 81, and 85 mJ m−2 from the broken bond model,
which are smaller than our experimental result.

3.4. The grain boundary energy, σG B

When σSL is isotropic, the surface tension is equal to σSL [1]. By considering the balance of
forces at the grain boundary groove, it is possible to determine the solid–solid surface energy
and the grain boundary energy, provided that the solid–liquid surface energy is known. When
the surface energy is isotropic, the force balance can be expressed as:

σSS = σ A
SL cos θA + σ B

SL cos θB (11)

where θA and θB are the angles that the solid–liquid surfaces make with the y-axis, as shown in
figure 1(a). If the grains on either side of the surface are of the same phases, the grain boundary
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energy can be expressed as

σGB = 2σSL cos θ (12)

where θ = (θA + θB)/2 is the angle. As can be seen from equation (12), σGB is not sensitive
to the error in θ for small θ values. Even a few degrees error in the angle measurement will
not have a significant effect on σGB when θ is small. In order to calculate σGB from the groove
shapes, the average of θA and θB was taken as θ . The angles, θ , in the cusp were obtained from
the cusp coordinates x, y using a Taylor expansion to the points at the base of the groove. For
the cusp measurements to be made, a single-phase solid region must be produced by holding
the specimen in a very stable temperature field. Initially, a specimen is placed in a temperature
gradient. The liquid droplets on the semi-solid region will move towards the hotter part of the
specimen until eventually a single-phase solid is left. The movement is a result of temperature
gradient zone melting (TGZM). The rate of motion depends on the temperature gradient. When
the alloy has been equilibrated, there is a liquid layer which is almost of eutectic composition,
a single solid phase layer which has a composition almost at the limit of solid solubility. In the
present work, the problem is to hold a solid–liquid surface in a very stable temperature gradient
for a long enough time to produce a macroscopically planar solid–liquid surface except for
the grain boundary cusps. In this work, orientations of two grains are not important to us.
According to figures 1(a) and (b), grain A is on the left-hand side and grain B is on the right-
hand side in the solid phase. In table 1, grain boundary grooves are obtained from different
equilibrated samples. The reason why the angles are different is that groove shapes made an
angle with grain boundaries. The grain boundary energies were calculated from equation (11)
using the related σSL and θ for ten groove shapes, for the Cd solid solution Cd–Zn liquid
solution (figure 5). The grain boundary energy with its standard deviation was found to be
σGB = 241 ± 30 mJ m−2. The error is estimated to be about 13% for σGB.

4. Conclusions

(1) The variation of the thermal conductivity with temperature up to TE for the Cd solid
solution, Cd–Zn eutectic solid solutions and the thermal conductivity of the eutectic liquid
solution at TE were measured for the Cd–Zn alloy.

(2) The equilibrated grain boundary, groove (cusp) shapes were obtained for the Cd solid
solution Cd–Zn liquid solution using the radial heat flow apparatus and the Gibbs–
Thomson coefficient was calculated by using the cusp shapes.

(3) The solid–liquid surface energy, σSL, was measured for the Cd solid solution Cd–Zn liquid
solution by using the Gibbs–Thomson coefficient and the effective entropy change.

(4) The grain boundary energies, σGB were determined in Cd–Zn alloy.

Acknowledgments

This work was supported financially by Erciyes University Research Fund, project FBA-04-12.
The authors would like to thank Erciyes University Technological Research and Development
Centre for their technical support.

References

[1] Woodroff D P 1973 The Solid–Liquid Interface (Cambridge: Cambridge University Press) pp 1–4
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